Quarterly Analytic Review Meeting

Philip Patterson November 12, 1997

Five-Lab Study Carbon Reductions in 2010 (MMTCE)

<u>ITEM</u>	<u>TOTAL</u>	<u>TRANSPORTATION</u>	<u>BUILDINGS</u>	<u>INDUSTRY</u>	<u>UTILITIES</u>
BASECASE	1730	616	571	548	
PERCENT	100%	35.6%	33.0%	31.7%	0.0%
EFFICIENCY CASE	1610	543	546	520	
DECREASE	120	73	25	28	0
% OF DECREASE	100%	60.8%	20.8%	23.3%	0.0%
+ \$25/TONNE	1500	528	527	494	-48
INCREMENTAL	110	15	19	26	48
% OF INCREMENTAL	100%	13.6%	17.3%	23.6%	43.6%
+ 50/TONNE	1340	513	509	455	-136
INCREMENTAL	160	15	18	39	88
% OF INCREMENTAL	100%	9.4%	11.3%	24.4%	55.0%
TOTAL REDUCTION					
EFFICENCY + \$25/TONNE	230	86	38	41	13
PERCENT	100%	37.4%	16.5%	17.8%	5.7%
EFFICENCY + \$50/TONNE	390	101	56	80	101
PERCENT	100%	25.9%	14.4%	20.5%	25.9%

Note: 1340 million metric tonnes was the U.S. total in 1990.

Comparison of OTT Estimates to the 5 and 11 Lab Studies in 2010

Greenhouse Gas Reductions (MTCE)

	OTT: Quality	5 Lab:	5 Lab: High-	11 Lab
	Metrics 99	Efficiency	Eff/ Low-	Study
			Carbon	-
Light	25.1	49.0	73.3	NA
Vehicles				
Freight	1.6	11.6	14.1	NA
Trucks				
Air	NA	10.6	13.9	NA
Rail	NA	1.5	2.5	NA
Total	26.7	72.6	104.4	40-65

CO₂ Reductions from Corn and Cellulose Ethanol

	Corn	Cellulose
Ford Motor Company	29%	60%
(Kinsey at CCM)		
Michael Wang (GHG) E85		
GREET 1.1	25%	79%-92%
GREET 1.3	20% - 30%	80%-85%
Delucchi (GHG) E95		
1991	-27%	72%
1997	3%	88%
Bechtold (EEA) E85	-8%	90%
5 Lab Study (1997)	-20%	80%

Greenhouse Gas Emissions & Petroleum Use for Ethanol Based Fuels Relative to Reformulated Gasoline (RFG)

Source: Wang, Michael Q., GREET 1.0 - Transportation Fuel Cycles Model: Methodology and Use, 1996 (updated 11/97), ANL/ESD-33, Argonne National Laboratory, Argonne, IL.

Ratio of Gasoline to Diesel GHG Emissions from Refining of Petroleum

Gasoline

Delucchi 2.43 NA

Wang 2.73 60 grams/mile (17% of total)

Transportation Energy Databook: Edition 17

- International: Ratio of Other Country Values to that for the U.S.
 - » Gasoline Prices (1996): Canada 1.41, Germany 3.38, Japan 2.63 (p. 1-4).
 - Diesel Prices (1996): Canada 1.24, Germany 2.63, Japan 2.18 (p. 1-6).
 - MPG of Cars in Operation (1994): Germany 1.25, Japan 1.13 (p. 1-9).
 - » Annual VMT per Vehicle (1994): Germany 0.63, Japan 0.52 (p. 1-11).

- Transportation Energy Characteristics
 - » Transportation Oil Use as a Percent of Domestic Oil Production = 172.7% (p. 2-4).
 - » BTUs per Passenger Mile (1995) (p. 2-18)

- Autos: 3467

- Transit Buses: 4650

- Air Carriers: 4236

- AMTRAK: 2341

Rail Transit: 3818

3 Highway Mode

- » Average age of vehicles in use (p. 3-8).
 - Autos: 1970 (5.6 years), 1995 (8.5 years)
 - Light trucks: 1970 (7.3 years), 1995 (8.4 years)
- » Average automobile lifetime (p. 3-9)
 - 1970: 10.7 years
 - 1990: 13.7 years
- » MPG of Class 8 Trucks: 4.8 in 1977 and 5.5 in 1992 (p. 3-29)
- » No. of Federal Govt. Highway Vehicles: 584,892 in 1995 (p. 3-38)
- » 1995 CAFE Fines Collected: \$40 M
- » 1995 Gas Guzzler Taxes Collected: \$75 M (p.3-46)
- » Loss in fuel economy by traveling 65 mph instead of 55 mph (p. 3-50) 1973 12.4%, 1984 17.8%, 1997 9.9%

Personal Travel Statistics

- » Vehicles per licensed drivers: 0.7 in 1950, 1.1 in 1995 (p. 4-2)
- » Percent of vehicles in households (p. 4-7) in 1994:
 - One vehicle households: 18.5%
 - Two vehicle households: 39.6%
 - Three vehicle households: 24.7%
 - Other households: 17.2%
- » Percent of households with two or more vehicles (p. 4-8)
 - 1960: 21.3%, 1990: 54.7%
- » Percent of vehicle miles for work commuting (p. 4-9)
 - 1969: 33.7%, 1990: 32.1%

- 6 Alternative Fuels
 - » Production of alcohol fuels in 1996 (p. 5-14)
 MTBE = 2846 MM gallons, Ethanol = 974 MM gallons
 - Gasohol consumption (p. 5-16) in MM gallons1980 = .497, 1990 = 7.492, 1995 = 13.093
- Non-Highway Mode
- © Emissions
- Appendices: A--Sources; B--Conversions; C--Data Sources for International Statistics
- Glossary
- Title Index

Growth in Factors Affecting Transportation Impacts (1985-1995)

	Annual Percent	10 Yr. Percent
US Population	1.0%	
Licensed Drivers	1.2%	
U.S. Vehicles	2.1%	
Car VMT	2.0%	
Light Truck VMT	6.3%	
Heavy Truck VMT	3.8%	
Total VMT	3.2%	
Highway NOX		-5.8%
Transportation VOCs		-8.4%
Transportation CO		-14.2%
Carbon Dioxide		18.6%
Energy UseTransportation	1.8%	
Energy UseHighway	1.8%	

- During the July meeting, preliminary analysis of production and price effects of varying the production levels of diesel fuel v. gasoline were described.
- Discussions emphasized actual production data from U.S. and European refineries.

What is the expected effect on diesel fuel prices of the accelerated market penetration of diesel engine light vehicles?

- Preliminary EIA results obtained in Late August
- Results were circulated for internal OTT use only.
- Request for formal, more rigorous analysis has been prepared.

EIA Assumptions:

- Two cases of gasoline displacement by diesel fuel:
 - » Fifteen percent
 - 1.35 mbpd of gasoline with replaced 1.21 mpbd of diesel fuel.
 - » Thirty percent
 - 2.72 mbpd of gasoline is replaced with 2.41 mbpd of diesel fuel.
- An 11% Efficiency benefit for diesel vehicles

Results- 15% Case:

- Diesel fuel prices rise \$0.036/gallon
- Gasoline prices drop \$0.032/gallon
 - » Net effect is a marginal decrease in the economic attractiveness of diesel vehicles

Results- 30% Case:

- Diesel fuel prices rise \$0.065/gallon
- Gasoline prices drop \$0.149/gallon
 - » Net effect is a strong decrease in the economic attractiveness of diesel vehicles

Heavy Duty Market Penetration Model

- 4 market segments
- 4 payback periods
- 11 categories for annual vehicle travel
- Capable of simultaneous market evaluation of two advanced vehicles
- Placeholders for 5 advanced vehicle configurations

HDMP: Market Segments

Classes 3-6

Classes 7&8

- Type 1 (avg. mpg 4.5, 37.6k vmt/yr): Multi-stop or step van, beverage, utility, winch, crane, wrecker, logging, pipe, garbage, dump, and cement
- Type 2 (avg. mpg 6.1, 64.6k vmt/yr): Platform, livestock, automobile transport, oilfield, grain, and tank
- Type 3 (avg. mpg 7.7, 86.5k vmt/yr): Insulated van, drop frame van, open top van, and basic enclosed van
- Segmentation by central or noncentral refueling

HDMP: Payback Periods

ATA 1997 survey of 224 motor carriers

HDMP: VMT Categories

Class 7&8 Non-centrally Refueled

Class 7&8 Market Penetration

EV Cost/Performance Model-Background

- Being developed by ANL
- Small car and passenger truck
- Six battery types- two data sources (CARB and Delphi)
- Operating and life-cycle costs for 2000, 2005, 2010, 2020
- Include other QM planning unit technologies (future)

EV Cost/Performance Model Structure

Program Analysis Methodology: QM 99

Program Analysis Methodology

Office of Transportation Technologies

Quality Metrics - Preliminary - 99

November, 1997

Prepared by:

OTT Analytic Team

Science Communications Planning James S. Moore, Jr.
John D. Maples
Vincent D. Schaper
Philip D. Patterson

Prepared for:

U.S. Department of Energy Office of Transportation Technologies

Washington, D.C.

Turning The Corner

	QM'98/ AEO'96	QM'99/ AEO'97	QM'98/ AEO'98
Turn Corner on Trans. Oil Use	2005	2014	NO
Reverses	NO	2016	N/A
Turn Corner on Oil Imports	2013	NO	NO
2015 Trans. Oil Demand (MBPD)	13.4	15.3	16.5
Trans. Oil Savings (MBPD)	2.1	2.0	2.0

QM'98/AEO'96

Transportation Petroleum Gap - QM'98

QM'99/AEO'97

Transportation Petroleum Gap - QM'99

QM'99/AEO'98

Transportation Petroleum Gap - QM'99

Benefit-Cost Comparison (\$ MM)

	2000	2005	2010	2015	2020
Costs					
Budget Costs	\$ <u>600</u>	\$ <u>1,600</u>	\$2,000	\$2,000	\$2,000
Total	\$600	\$1,600	\$2,000	\$2,000	\$2,000
Benefits					
Energy Savings	\$400	\$8,023	\$37,704	\$100,026	\$189,485
Oil Security (\$4 + \$33 per bbl)	\$1,087	\$19,712	\$75,851	\$167,014	\$285,641
Gasoline Price Decline	\$2,520	\$6,925	\$11,503	\$16,138	\$20,778
Distillate Price Decline	\$511	\$1,419	\$2,379	\$3,376	\$4,386
Residual Price Decline	\$265	\$755	\$1,297	\$1,885	\$2,517
Natural Gas Price Rise	(\$1,765)	(\$4,857)	(\$8,064)	(\$11,368)	(\$14,760)
CO2 (\$55 per tonne C)	\$57	\$879	\$5,620	\$15,464	\$29,212
NOX (\$3,300 per ton)	\$11	\$352	\$1,710	\$3,932	\$5,574
CO (\$360 per ton)	\$18	\$601	\$3,903	\$13,283	\$28,065
HC (\$3,660 per ton)	\$18	\$487	\$2,636	\$7,967	\$15,298
Incremental Costs	(\$4,416)	(\$39,269)	(\$78,183)	(\$126,755)	(\$186,805)
GDP Benefits	\$ <u>2,180</u>	\$23,141	\$ <u>65,819</u>	\$ <u>127,420</u>	\$206,081
Total	\$884	\$18,167	\$122,176	\$318,383	\$585,472
Benefit-Cost Ratio	1.47	11.35	61.09	159.19	292.74

Consumer Study

Vehicle Consumer

Characteristics and Trends

Data Book

- Preliminary Draft -

November, 1997

Prepared by:

OTT Analytic Team

John D. Maples Vincent D. Schaper Philip D. Patterson James S. Moore, Jr.

Prepared for:

U.S. Department of Energy Office of Transportation Technologies

Washington D.C.

Washington,

Surveys on Climate Change

- Sustainable Energy Budget Coalition (December 1995)
- "In your mind, how serious a threat do you think global climate change, also known as global warming, caused by emissions from the combustion of oil, gasoline, and coal is?"
 - » Very serious: 35.5%
 - » Somewhat serious: 35.4%
 - » Not too serious: 16.0%
 - » Not a threat at all: 8.7%
 - » Don't know: 4.4%

- World Wildlife Fund (August 15, 1997)
- "Generally speaking, how serious of a threat do you think global warming is today, very serious, somewhat serious, not too serious, or not serious at allor don't you have an opinion on this?"
 - » Very serious: 24%
 - » Somewhat serious: 42%
 - » Not too serious: 12%
 - » Not serious at all: 7%
 - » Don't know: 14%

Surveys on Oil Imports

- Opinion Research Corporation International (November 9, 1997)
- "What percentage of oil used in the US is imported?"

» 0% to 19%: 3.0%

20% to 39%: 8.7%

» 40% to 59%: 20.7%

» 60% to 79%: 45.1%

» 80% to 100%: 22.4%

"The actual import percentage is 50% and is projected to grow. How concerned are you over the amount of oil the U.S. imports?"

» Very concerned: 35%

» Somewhat concerned: 41%

» Not too concerned: 14%

» Not concerned at all: 9%

» Don't know: 0%

Survey on Oil Imports: Reasons for concern or lack of it

Why concerned

- » Makes U.S. dependent on foreign countries; U.S. should use its own energy resources
- » Gives foreign countries too much influence; could cause international conflicts; M.E. is volatile; possibility of cut-off
- » Takes jobs from U.S.; bad for economy
- » Trade imbalance
- » Environmental concerns
- » Oil supply is finite

Why not concerned

- » Importing oil conserves U.S. resources
- » Importing oil keeps prices down
- » Economy is global
- » Importing oil is necessary/U.S. can't meet its own needs
- » U.S. has its own oil resources

EIA Coordination

- AEO'98 High Technology Case
 - » EIA used OTT vehicle attributes
 - » Switched to positive value Constant terms
- Diesel Fuel Price Sensitivity Analysis
- Heavy Duty Market Penetration
- Vehicle Choice Modeling

Vehicle Choice Modeling

- Starting with 11 Light Duty Vehicle Size Classes
- 10 Vehicle/fuel coefficients to be tested
 - » vehicle price, fuel cost, maximum range, maintenance cost, EV battery cost, acceleration, fuel availability, number of veh. in use, home refueling, range
- Coefficient development to be completed by January 1998

OTT Success Stories: Background

- Information provided in response to request to quantify the benefits from successful technologies.
- Analyses conducted for 9 technologies

OTT Success Stories: Benefits

	Oil Savings - 2010	
TECHNOLOGY	BTU x 10 ¹²	Million Barrels of Oil
Fuel Efficient Tires	80.0	13.7
Advanced Induction Hardening	2.3	0.4
Fuel Cell Multi-fuel Reformer	8.1	1.4
Advanced Natural Gas Vehicle	1,375.0	237.3
Lightweight Material Manufacturing	0.087	0.015
Ultrasafe, Ultra-low Emissioon School Bus	36.0	6.2
Used Cooking Oil to Clean Bio-diesel	20.8	3.6
New Auto Air Bag Design	4.1	0.7
Tail-pipe Diesel NOx Control	Emissions only	

Proposed Tax Incentive to Commercialize PNGV

- Extend current EV purchaser tax credit to 2010 and clarify that the credit covers PNGVs.
- Provide two levels of credit:
 - » 10% (up to \$4,000) for cars with fuel economy greater than 80 mpg and light trucks with fuel economy greater than 60 mpg, and
 - » 5% (up to \$2,000) for cars with fuel economy greater than 65 mpg and light trucks with fuel economy greater than 40 mpg.
- The credit is phased out between 2007 and 2010.

Asilomar 1997: Findings

- 2, 20, and 80 page summaries are available.
- Regulations were successful (criteria pollutants, CAFE).
- Fuel prices have little effect on vehicle use.
- Land use policy has little potential for reducing transportation energy use.
- Greenhouse gas emissions are not a consumer concern today.

Asilomar 1997: Conclusions

- Tradeoffs will probably have to be made
 - » NO_x v. CO₂
 - » PM v. Criteria Pollutants
 - » PM v. CO₂ (mandatory use of NG buses)
- Regulations
 - » Must be flexible
 - » Force nearly equal hurt to manufacturers
 - » Consumers are willing to sacrifice if everyone does it
- Technology is still the answer
 - » EV technology can be used for other applications
 - » Low sulfur fuels are possible

Some of My Asilomar Highlights

- Toyota HEV
 - » Toyota described it
 - » GM said it could not pass emissions and had poor driveability
 - John German (EPA) said GM was wrong on both counts
- Land Use Programs
 - » A trendy issue that is not effective in reducing VMT, emissions, or energy
 - "Sprawl" is really "decentralization"
- Mark Delucchi: We need an energy [oil] breakthrough book (like Carson's <u>Silent Spring</u>)
- Toyota found in survey that 8% of buyers are "eco-friendly"
- GM: Big 3 initially thought PNGV probability of success was zero. Now they think there is some chance.

DOE Strategic Plan: The DOE Mission

To foster a secure and reliable energy system that is environmentally and economically sustainable, to be a responsible steward of the Nation's nuclear weapons, to clean up our own facilities, and to support continued United States leadership in science and technology.

DOE Strategic Plan: The DOE Vision

The DOE, through its leadership in science and technology, will continue to advance U.S. energy, environmental, economic, and national security by being:

- » A key contributor to ensure that the United States has a flexible, clean, efficient, and equitable system of energy supply and end-use with minimal vulnerability to disruption;
- » A vital contributor to reduce the global danger through its national security, nuclear safety, and nonproliferation activities;
- » A world leader in environmental restoration, nuclear materials stabilization, waste management, facilities decommissioning, and pollution prevention;
- » A major partner in world class science and technology through its National Laboratories, research centers, university research, and its educational and informational dissemination program; and
- » A safe and rewarding workplace that is recognized for business excellence, nurtures creativity, is trusted, and delivers results.

DOE Strategic Plan: Strategies

- ENERGY RESOURCES: The DOE and its partners promote secure, competitive, and environmentally responsible energy systems that serve the needs of the public.
 - » Reduce the vulnerability of the U.S. economy to disruptions in energy supplies.
 - Ensure that a competitive electricity generation industry is in place that can deliver adequate and affordable supplies with reduced environmental impact.
 - Increase the efficiency and productivity of energy use, while limiting environmental impacts.

- » Support U.S. energy, environmental, and economic interests in global markets.
- Carry out information collection, analysis, and research that will facilitate development of informed positions on long-term energy supply and use of alternatives.
- NATIONAL SECURITY
- ® ENVIRONMENTAL QUALITY
- SCIENCE AND TECHNOLOGY
- 6 CORPORATE MANAGEMENT